The Second Neighborhood Conjecture For Oriented Graphs Missing Generalized Combs
نویسنده
چکیده
Seymour’s Second Neighborhood Conjecture asserts that every oriented graph has a vertex whose first out-neighborhood is at most as large as its second out-neighborhood. We introduce the generalized comb, characterize them and prove that every oriented graph missing it satisfies this conjecture.
منابع مشابه
On the oriented perfect path double cover conjecture
An oriented perfect path double cover (OPPDC) of a graph $G$ is a collection of directed paths in the symmetric orientation $G_s$ of $G$ such that each arc of $G_s$ lies in exactly one of the paths and each vertex of $G$ appears just once as a beginning and just once as an end of a path. Maxov{'a} and Ne{v{s}}et{v{r}}il (Discrete Math. 276 (2004) 287-294) conjectured that ...
متن کاملThe lower bound for the number of 1-factors in generalized Petersen graphs
In this paper, we investigate the number of 1-factors of a generalized Petersen graph $P(N,k)$ and get a lower bound for the number of 1-factors of $P(N,k)$ as $k$ is odd, which shows that the number of 1-factors of $P(N,k)$ is exponential in this case and confirms a conjecture due to Lovász and Plummer (Ann. New York Acad. Sci. 576(2006), no. 1, 389-398).
متن کاملOn oriented graphs with minimal skew energy
Let S(Gσ) be the skew-adjacency matrix of an oriented graph Gσ . The skew energy of Gσ is the sum of all singular values of its skew-adjacency matrix S(Gσ). This paper first establishes an integral formula for the skew energy of an oriented graph. Then, it determines all oriented graphs with minimal skew energy among all connected oriented graphs on n vertices with m (n ≤ m < 2(n− 2)) arcs, whi...
متن کامل-λ coloring of graphs and Conjecture Δ ^ 2
For a given graph G, the square of G, denoted by G2, is a graph with the vertex set V(G) such that two vertices are adjacent if and only if the distance of these vertices in G is at most two. A graph G is called squared if there exists some graph H such that G= H2. A function f:V(G) {0,1,2…, k} is called a coloring of G if for every pair of vertices x,yV(G) with d(x,y)=1 we have |f(x)-f(y)|2 an...
متن کاملAbout the second neighborhood problem in tournaments missing disjoint stars
Let D be a digraph without digons. Seymour’s second neighborhood conjecture states that D has a vertex v such that d(v) ≤ d(v). Under some conditions, we prove this conjecture for digraphs missing n disjoint stars. Weaker conditions are required when n = 2 or 3. In some cases we exhibit two such vertices.
متن کامل